Nuprl Lemma : bag-parts_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (bag-parts(eq;bs) ∈ bag(bag(T) List+)) supposing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-parts: bag-parts(eq;bs) bag: bag(T) listp: List+ deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] less_than: a < b has-valueall: has-valueall(a) has-value: (a)↓ so_apply: x[s] so_lambda: λ2x.t[x] callbyvalueall: callbyvalueall bag-parts: bag-parts(eq;bs) less_than': less_than'(a;b) le: A ≤ B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B guard: {T} prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  false: False implies:  Q nat: true: True squash: T pi2: snd(t) pi1: fst(t) uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b listp: List+
Lemmas referenced :  valueall-type_wf deq_wf bag_wf int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt product-valueall-type bag-valueall-type bag-partitions_wf evalall-reduce int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties int_seg_wf nat_wf bag-size_wf le_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties valueall-type-has-valueall pi2_wf pi1_wf_top bag-append_wf equal_wf bag-member_wf true_wf squash_wf bag-member-partitions bag-settype bag-combine_wf listp_wf istype-universe istype-nat subtype_rel_self iff_weakening_equal bag-size-append decidable__assert bag-null_wf assert-bag-null iff_weakening_uiff assert_wf equal-wf-T-base empty-bag_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot easy-member-int_seg bag-size-zero full-omega-unsat istype-int add-is-int-iff set-valueall-type list_wf length_wf list-valueall-type ifthenelse_wf single-bag_wf cons-listp nil_wf bag-map_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality cumulativity isectElimination extract_by_obid axiomEquality sqequalRule equalitySymmetry hypothesis equalityTransitivity hypothesisEquality dependent_functionElimination sqequalHypSubstitution thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution addEquality productEquality callbyvalueReduce dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality unionElimination productElimination applyEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination lambdaFormation independent_pairEquality setEquality baseClosed imageMemberEquality imageElimination Error :memTop,  lambdaEquality_alt inhabitedIsType setIsType productIsType equalityIstype universeIsType instantiate lambdaFormation_alt equalityElimination dependent_pairFormation_alt promote_hyp closedConclusion approximateComputation pointwiseFunctionality baseApply

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (bag-parts(eq;bs)  \mmember{}  bag(bag(T)  List\msupplus{})) 
    supposing  valueall-type(T)



Date html generated: 2020_05_20-AM-09_04_29
Last ObjectModification: 2020_01_28-PM-03_23_08

Theory : bags_2


Home Index