Nuprl Lemma : bag-settype
∀[T:Type]. ∀[bs:bag(T)]. ∀[P:T ⟶ ℙ].  bs ∈ bag({x:T| P[x]} ) supposing ∀x:T. (x ↓∈ bs 
⇒ P[x])
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bag: bag(T)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_wf, 
permutation_wf, 
permutation_weakening, 
list-set-type2, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
bag-member-select, 
int_seg_wf, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
bag_wf, 
all_wf, 
bag-member_wf, 
list-subtype-bag, 
subtype_rel_self, 
permutation-strong-subtype, 
strong-subtype-set2, 
quotient-member-eq, 
permutation-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
pointwiseFunctionality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
lambdaEquality, 
applyEquality, 
cumulativity, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
productEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
functionEquality, 
universeEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    bs  \mmember{}  bag(\{x:T|  P[x]\}  )  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  P[x])
Date html generated:
2018_05_21-PM-06_25_07
Last ObjectModification:
2018_05_19-PM-05_15_36
Theory : bags
Home
Index