Nuprl Lemma : bag-settype

[T:Type]. ∀[bs:bag(T)]. ∀[P:T ⟶ ℙ].  bs ∈ bag({x:T| P[x]} supposing ∀x:T. (x ↓∈ bs  P[x])


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag: bag(T) all: x:A. B[x] prop: quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T subtype_rel: A ⊆B true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_wf permutation_wf permutation_weakening list-set-type2 select_wf int_seg_properties length_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma bag-member-select int_seg_wf equal-wf-base member_wf squash_wf true_wf bag_wf all_wf bag-member_wf list-subtype-bag subtype_rel_self permutation-strong-subtype strong-subtype-set2 quotient-member-eq permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination independent_isectElimination pointwiseFunctionality sqequalRule pertypeElimination productElimination lambdaEquality applyEquality cumulativity setElimination rename natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination productEquality setEquality imageMemberEquality baseClosed axiomEquality functionEquality universeEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    bs  \mmember{}  bag(\{x:T|  P[x]\}  )  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  P[x])



Date html generated: 2018_05_21-PM-06_25_07
Last ObjectModification: 2018_05_19-PM-05_15_36

Theory : bags


Home Index