Step
*
of Lemma
bag-settype
∀[T:Type]. ∀[bs:bag(T)]. ∀[P:T ⟶ ℙ]. bs ∈ bag({x:T| P[x]} ) supposing ∀x:T. (x ↓∈ bs
⇒ P[x])
BY
{ (Auto
THEN newQuotD 2
THEN (Assert a ∈ {x:T| P[x]} List BY
(BLemma `list-set-type2` THEN Auto THEN D 0 THEN Auto THEN BackThruSomeHyp THEN D 0 THEN Auto))) }
1
1. T : Type
2. T List ∈ Type
3. ∀as,b1:T List. (permutation(T;as;b1) ∈ Type)
4. ∀as:T List. permutation(T;as;as)
5. a : Base
6. b : Base
7. c : a = b ∈ pertype(λas,bs. ((as ∈ T List) ∧ (bs ∈ T List) ∧ permutation(T;as;bs)))
8. a ∈ T List
9. b ∈ T List
10. permutation(T;a;b)
11. P : T ⟶ ℙ
12. ∀x:T. (x ↓∈ a
⇒ P[x])
13. a ∈ {x:T| P[x]} List
⊢ a ∈ bag({x:T| P[x]} )
2
1. T : Type
2. T List ∈ Type
3. ∀as,b1:T List. (permutation(T;as;b1) ∈ Type)
4. ∀as:T List. permutation(T;as;as)
5. a : Base
6. b : Base
7. c : a = b ∈ pertype(λas,bs. ((as ∈ T List) ∧ (bs ∈ T List) ∧ permutation(T;as;bs)))
8. a ∈ T List
9. b ∈ T List
10. permutation(T;a;b)
11. P : T ⟶ ℙ
12. ∀x:T. (x ↓∈ a
⇒ P[x])
13. a ∈ {x:T| P[x]} List
⊢ a = b ∈ bag({x:T| P[x]} )
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[bs:bag(T)]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. bs \mmember{} bag(\{x:T| P[x]\} ) supposing \mforall{}x:T. (x \mdownarrow{}\mmember{} bs {}\mRightarrow{} P[x])
By
Latex:
(Auto
THEN newQuotD 2
THEN (Assert a \mmember{} \{x:T| P[x]\} List BY
(BLemma `list-set-type2`
THEN Auto
THEN D 0
THEN Auto
THEN BackThruSomeHyp
THEN D 0
THEN Auto)))
Home
Index