Nuprl Lemma : bag-rep_wf
∀[T:Type]. ∀[n:ℕ]. ∀[x:T].  (bag-rep(n;x) ∈ T List)
Proof
Definitions occuring in Statement : 
bag-rep: bag-rep(n;x)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-rep: bag-rep(n;x)
, 
empty-bag: {}
, 
nil: []
, 
it: ⋅
, 
cons-bag: x.b
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
list_wf, 
nil_wf, 
cons_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].    (bag-rep(n;x)  \mmember{}  T  List)
Date html generated:
2016_05_15-PM-02_34_02
Last ObjectModification:
2015_12_27-AM-09_46_54
Theory : bags
Home
Index