Nuprl Lemma : bag-rep_wf

[T:Type]. ∀[n:ℕ]. ∀[x:T].  (bag-rep(n;x) ∈ List)


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-rep: bag-rep(n;x) empty-bag: {} nil: [] it: cons-bag: x.b nat:
Lemmas referenced :  primrec_wf list_wf nil_wf cons_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache lambdaEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].    (bag-rep(n;x)  \mmember{}  T  List)



Date html generated: 2016_05_15-PM-02_34_02
Last ObjectModification: 2015_12_27-AM-09_46_54

Theory : bags


Home Index