Nuprl Lemma : bag-restrict-disjoint

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b|x) {} supposing ¬x ↓∈ b


Proof




Definitions occuring in Statement :  bag-restrict: (b|x) bag-member: x ↓∈ bs empty-bag: {} bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q squash: T exists: x:A. B[x] prop: not: ¬A iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q empty-bag: {} bag-restrict: (b|x) bag-filter: [x∈b|p[x]] deq: EqDecider(T) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] false: False uiff: uiff(P;Q) eqof: eqof(d)
Lemmas referenced :  equal-empty-bag bag-restrict_wf bag_to_squash_list not_wf bag-member_wf bag-member-list decidable-equal-deq l_member_wf equal-wf-T-base bag_wf deq_wf filter_is_nil nil_wf list-subtype-bag l_all_iff assert_wf and_wf equal_wf safe-assert-deq eqof_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination cumulativity hypothesisEquality hypothesis independent_functionElimination imageElimination productElimination promote_hyp equalitySymmetry hyp_replacement Error :applyLambdaEquality,  sqequalRule rename lambdaFormation baseClosed sqequalAxiom isect_memberEquality equalityTransitivity universeEquality lambdaEquality applyEquality setElimination independent_isectElimination voidEquality voidElimination setEquality dependent_set_memberEquality independent_pairFormation addLevel impliesFunctionality levelHypothesis impliesLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b|x)  \msim{}  \{\}  supposing  \mneg{}x  \mdownarrow{}\mmember{}  b



Date html generated: 2016_10_25-AM-11_31_38
Last ObjectModification: 2016_07_12-AM-07_36_40

Theory : bags_2


Home Index