Nuprl Lemma : bag-restrict-disjoint
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b|x) ~ {} supposing ¬x ↓∈ b
Proof
Definitions occuring in Statement : 
bag-restrict: (b|x)
, 
bag-member: x ↓∈ bs
, 
empty-bag: {}
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
empty-bag: {}
, 
bag-restrict: (b|x)
, 
bag-filter: [x∈b|p[x]]
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
false: False
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
Lemmas referenced : 
equal-empty-bag, 
bag-restrict_wf, 
bag_to_squash_list, 
not_wf, 
bag-member_wf, 
bag-member-list, 
decidable-equal-deq, 
l_member_wf, 
equal-wf-T-base, 
bag_wf, 
deq_wf, 
filter_is_nil, 
nil_wf, 
list-subtype-bag, 
l_all_iff, 
assert_wf, 
and_wf, 
equal_wf, 
safe-assert-deq, 
eqof_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
rename, 
lambdaFormation, 
baseClosed, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
setEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
impliesLevelFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b|x)  \msim{}  \{\}  supposing  \mneg{}x  \mdownarrow{}\mmember{}  b
Date html generated:
2016_10_25-AM-11_31_38
Last ObjectModification:
2016_07_12-AM-07_36_40
Theory : bags_2
Home
Index