Nuprl Lemma : bag-restrict_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  ((b|x) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-restrict: (b|x) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-restrict: (b|x) so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter_wf subtype_rel_bag assert_wf bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality setElimination rename hypothesis because_Cache setEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    ((b|x)  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-08_10_14
Last ObjectModification: 2015_12_27-PM-04_12_13

Theory : bags_2


Home Index