Nuprl Lemma : tlp_wf
∀[A:Type]. ∀[L:A List+].  (tlp(L) ∈ A List)
Proof
Definitions occuring in Statement : 
tlp: tlp(L)
, 
listp: A List+
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tlp: tlp(L)
, 
listp: A List+
Lemmas referenced : 
tl_wf, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List\msupplus{}].    (tlp(L)  \mmember{}  A  List)
Date html generated:
2016_05_14-PM-01_30_06
Last ObjectModification:
2015_12_26-PM-05_22_59
Theory : list_1
Home
Index