Nuprl Lemma : tlp_wf

[A:Type]. ∀[L:A List+].  (tlp(L) ∈ List)


Proof




Definitions occuring in Statement :  tlp: tlp(L) listp: List+ list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tlp: tlp(L) listp: List+
Lemmas referenced :  tl_wf listp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List\msupplus{}].    (tlp(L)  \mmember{}  A  List)



Date html generated: 2016_05_14-PM-01_30_06
Last ObjectModification: 2015_12_26-PM-05_22_59

Theory : list_1


Home Index