Nuprl Lemma : bag-rep-add

x:Top. ∀n,m:ℕ.  (bag-rep(n m;x) bag-rep(n;x) bag-rep(m;x))


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) bag-append: as bs nat: top: Top all: x:A. B[x] add: m sqequal: t
Definitions unfolded in proof :  member: t ∈ T top: Top nat: all: x:A. B[x] uall: [x:A]. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A and: P ∧ Q prop: bag-rep: bag-rep(n;x) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  bag-append: as bs empty-bag: {} cons-bag: x.b primrec: primrec(n;b;c) append: as bs nil: [] cons: [a b] list_ind: list_ind bottom:
Lemmas referenced :  nat_wf top_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec-unroll empty_bag_append_lemma zero-add decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int cons_bag_append_lemma general_arith_equation1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity natural_numberEquality isect_memberEquality voidElimination voidEquality cut introduction extract_by_obid hypothesis addEquality hypothesisEquality sqequalHypSubstitution setElimination thin rename because_Cache lambdaFormation isectElimination intWeakElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}x:Top.  \mforall{}n,m:\mBbbN{}.    (bag-rep(n  +  m;x)  \msim{}  bag-rep(n;x)  +  bag-rep(m;x))



Date html generated: 2017_10_01-AM-08_52_03
Last ObjectModification: 2017_07_26-PM-04_33_46

Theory : bags


Home Index