Nuprl Lemma : cons_bag_append_lemma

b2,b1,x:Top.  (x.b1 b2 x.b1 b2)


Proof




Definitions occuring in Statement :  bag-append: as bs cons-bag: x.b top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cons-bag: x.b bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}b2,b1,x:Top.    (x.b1  +  b2  \msim{}  x.b1  +  b2)



Date html generated: 2016_05_15-PM-02_22_25
Last ObjectModification: 2015_12_27-AM-09_54_54

Theory : bags


Home Index