Nuprl Lemma : cons_bag_append_lemma
∀b2,b1,x:Top. (x.b1 + b2 ~ x.b1 + b2)
Proof
Definitions occuring in Statement :
bag-append: as + bs
,
cons-bag: x.b
,
top: Top
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
cons-bag: x.b
,
bag-append: as + bs
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
top_wf,
list_ind_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
lemma_by_obid,
sqequalRule,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality
Latex:
\mforall{}b2,b1,x:Top. (x.b1 + b2 \msim{} x.b1 + b2)
Date html generated:
2016_05_15-PM-02_22_25
Last ObjectModification:
2015_12_27-AM-09_54_54
Theory : bags
Home
Index