Nuprl Lemma : cons_bag_append_lemma
∀b2,b1,x:Top.  (x.b1 + b2 ~ x.b1 + b2)
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
cons-bag: x.b
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cons-bag: x.b
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}b2,b1,x:Top.    (x.b1  +  b2  \msim{}  x.b1  +  b2)
Date html generated:
2016_05_15-PM-02_22_25
Last ObjectModification:
2015_12_27-AM-09_54_54
Theory : bags
Home
Index