Nuprl Lemma : bag-restrict-split
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b = ((b|x) + (b|¬x)) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-co-restrict: (b|¬x)
, 
bag-restrict: (b|x)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
so_apply: x[s]
, 
bag-co-restrict: (b|¬x)
, 
bag-restrict: (b|x)
Lemmas referenced : 
bag-filter-split, 
bag_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
equalitySymmetry, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b  =  ((b|x)  +  (b|\mneg{}x)))
Date html generated:
2016_05_15-PM-08_10_53
Last ObjectModification:
2015_12_27-PM-04_11_24
Theory : bags_2
Home
Index