Nuprl Lemma : bag-restrict-split

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b ((b|x) (b|¬x)) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-co-restrict: (b|¬x) bag-restrict: (b|x) bag-append: as bs bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] bag-co-restrict: (b|¬x) bag-restrict: (b|x)
Lemmas referenced :  bag-filter-split bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality applyEquality setElimination rename hypothesisEquality equalitySymmetry hypothesis isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b  =  ((b|x)  +  (b|\mneg{}x)))



Date html generated: 2016_05_15-PM-08_10_53
Last ObjectModification: 2015_12_27-PM-04_11_24

Theory : bags_2


Home Index