Nuprl Lemma : bag-append-union
∀[T:Type]. ∀as,bs:bag(bag(T)).  (bag-union(as + bs) = (bag-union(as) + bag-union(bs)) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
concat: concat(ll)
Lemmas referenced : 
bag_wf, 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
equal_wf, 
bag-union_wf, 
bag-append_wf, 
equal-wf-base, 
list_induction, 
list-subtype-bag, 
subtype_rel_self, 
list_ind_nil_lemma, 
reduce_nil_lemma, 
list_ind_cons_lemma, 
reduce_cons_lemma, 
bag-append-assoc2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
axiomEquality, 
universeEquality, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}as,bs:bag(bag(T)).    (bag-union(as  +  bs)  =  (bag-union(as)  +  bag-union(bs)))
Date html generated:
2017_10_01-AM-08_46_45
Last ObjectModification:
2017_07_26-PM-04_31_27
Theory : bags
Home
Index