Nuprl Lemma : bag-append-union

[T:Type]. ∀as,bs:bag(bag(T)).  (bag-union(as bs) (bag-union(as) bag-union(bs)) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-append: as bs bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] bag-union: bag-union(bbs) bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] concat: concat(ll)
Lemmas referenced :  bag_wf list_wf quotient-member-eq permutation_wf permutation-equiv equal_wf bag-union_wf bag-append_wf equal-wf-base list_induction list-subtype-bag subtype_rel_self list_ind_nil_lemma reduce_nil_lemma list_ind_cons_lemma reduce_cons_lemma bag-append-assoc2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality productEquality axiomEquality universeEquality applyEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:bag(bag(T)).    (bag-union(as  +  bs)  =  (bag-union(as)  +  bag-union(bs)))



Date html generated: 2017_10_01-AM-08_46_45
Last ObjectModification: 2017_07_26-PM-04_31_27

Theory : bags


Home Index