Nuprl Lemma : bag-member-parts'
∀[T:Type]
  ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)]. ∀[L:bag(T) List+].
    uiff(L ↓∈ bag-parts'(eq;bs;x);(¬x ↓∈ hd(L)) ∧ (∀x∈tl(L).¬(x = {} ∈ bag(T))) ∧ (bag-union(L) = bs ∈ bag(T))) 
  supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-parts': bag-parts'(eq;bs;x), 
bag-member: x ↓∈ bs, 
bag-union: bag-union(bbs), 
empty-bag: {}, 
bag: bag(T), 
l_all: (∀x∈L.P[x]), 
listp: A List+, 
hd: hd(l), 
tl: tl(l), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag-parts': bag-parts'(eq;bs;x), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
listp: A List+, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
less_than: a < b, 
squash: ↓T, 
bag-member: x ↓∈ bs, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
cons: [a / b], 
cand: A c∧ B, 
bag-union: bag-union(bbs), 
concat: concat(ll), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
append: as @ bs, 
empty-bag: {}, 
nil: [], 
length: ||as||, 
bag-append: as + bs, 
nat: ℕ, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
sq_or: a ↓∨ b, 
sq_stable: SqStable(P), 
subtract: n - m, 
cons-bag: x.b, 
rev_uimplies: rev_uimplies(P;Q), 
tl: tl(l), 
pi2: snd(t)
Lemmas referenced : 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
bag_wf, 
bag-member_wf, 
hd_wf, 
listp_properties, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
tl_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
listp_wf, 
bag-parts'_wf, 
not_wf, 
l_all_wf2, 
l_member_wf, 
bag-union_wf, 
subtype_rel_set, 
list_wf, 
less_than_wf, 
list-subtype-bag, 
deq_wf, 
valueall-type_wf, 
equal-empty-bag, 
iff_weakening_uiff, 
single-bag_wf, 
cons_wf_listp, 
nil_wf, 
bag-member-single, 
uiff_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
ge_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
reduce_tl_cons_lemma, 
bag-member-empty-iff, 
l_all_nil, 
empty-bag_wf, 
reduce_cons_lemma, 
reduce_nil_lemma, 
bag-append-empty, 
bag-subtype-list, 
bag-size_wf, 
bag-size-append, 
subtype_rel_self, 
bag_size_empty_lemma, 
nat_wf, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
length_wf_nat, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bag-size-zero, 
l_all_cons, 
valueall-type-has-valueall, 
bag-valueall-type, 
set-valueall-type, 
list-valueall-type, 
bag-parts_wf, 
evalall-reduce, 
bag-member-append, 
bag-map_wf, 
bag-filter_wf, 
eq_int_wf, 
bag-count_wf, 
subtype_rel_bag, 
assert_wf, 
bag-append_wf, 
sq_or_wf, 
exists_wf, 
or_wf, 
bag-member-map, 
l_all_iff, 
all_wf, 
sq_stable__and, 
sq_stable__not, 
sq_stable__all, 
sq_stable__equal, 
bag-member-parts, 
bag-member-filter, 
assert_of_eq_int, 
bag-member-count, 
reduce_tl_nil_lemma, 
decidable__assert, 
null_wf3, 
subtype_rel_list, 
top_wf, 
assert_of_null, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
cons_wf, 
bag_union_cons_lemma, 
empty_bag_append_lemma, 
bag-count-is-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
independent_pairEquality, 
isect_memberEquality, 
lambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
axiomEquality, 
imageMemberEquality, 
productEquality, 
setEquality, 
applyEquality, 
universeEquality, 
addLevel, 
hypothesis_subsumption, 
applyLambdaEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
addEquality, 
callbyvalueReduce, 
orFunctionality, 
functionEquality, 
inlFormation, 
minusEquality, 
inrFormation
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].  \mforall{}[L:bag(T)  List\msupplus{}].
        uiff(L  \mdownarrow{}\mmember{}  bag-parts'(eq;bs;x);(\mneg{}x  \mdownarrow{}\mmember{}  hd(L))  \mwedge{}  (\mforall{}x\mmember{}tl(L).\mneg{}(x  =  \{\}))  \mwedge{}  (bag-union(L)  =  bs)) 
    supposing  valueall-type(T)
Date html generated:
2018_05_21-PM-09_51_27
Last ObjectModification:
2017_07_26-PM-06_31_30
Theory : bags_2
Home
Index