Nuprl Lemma : bag_union_cons_lemma

v,u:Top.  (bag-union(u.v) bag-union(v))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-append: as bs cons-bag: x.b top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cons-bag: x.b bag-union: bag-union(bbs) concat: concat(ll) top: Top bag-append: as bs
Lemmas referenced :  top_wf reduce_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}v,u:Top.    (bag-union(u.v)  \msim{}  u  +  bag-union(v))



Date html generated: 2016_05_15-PM-02_26_56
Last ObjectModification: 2015_12_27-AM-09_51_45

Theory : bags


Home Index