Nuprl Lemma : bag_union_cons_lemma
∀v,u:Top.  (bag-union(u.v) ~ u + bag-union(v))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
cons-bag: x.b
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cons-bag: x.b
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
top: Top
, 
bag-append: as + bs
Lemmas referenced : 
top_wf, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}v,u:Top.    (bag-union(u.v)  \msim{}  u  +  bag-union(v))
Date html generated:
2016_05_15-PM-02_26_56
Last ObjectModification:
2015_12_27-AM-09_51_45
Theory : bags
Home
Index