Nuprl Lemma : bag-count-is-zero

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (#x in bs) supposing ¬x ↓∈ bs


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: not: ¬A uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties decidable__le nat_wf bag-count_wf le_wf deq_wf bag_wf bag-member_wf not_wf bag-member-count int_subtype_base set_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom isect_memberEquality universeEquality lambdaFormation productElimination natural_numberEquality applyEquality lambdaEquality setElimination rename promote_hyp unionElimination setEquality intEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (\#x  in  bs)  \msim{}  0  supposing  \mneg{}x  \mdownarrow{}\mmember{}  bs



Date html generated: 2016_05_15-PM-07_58_06
Last ObjectModification: 2016_01_16-PM-01_31_07

Theory : bags_2


Home Index