Nuprl Lemma : bag-co-restrict-property
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (¬x ↓∈ (b|¬x))
Proof
Definitions occuring in Statement : 
bag-co-restrict: (b|¬x)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
bag-co-restrict: (b|¬x)
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
eqof: eqof(d)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag-member-filter, 
bnot_wf, 
bag-member_wf, 
bag-co-restrict_wf, 
bag_wf, 
deq_wf, 
assert_wf, 
eqof_wf, 
not_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
universeEquality, 
independent_pairFormation, 
impliesFunctionality, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (\mneg{}x  \mdownarrow{}\mmember{}  (b|\mneg{}x))
Date html generated:
2018_05_21-PM-09_52_45
Last ObjectModification:
2017_07_26-PM-06_32_04
Theory : bags_2
Home
Index