Nuprl Lemma : bag-co-restrict-property

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  x ↓∈ (b|¬x))


Proof




Definitions occuring in Statement :  bag-co-restrict: (b|¬x) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False bag-co-restrict: (b|¬x) so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: eqof: eqof(d) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag-member-filter bnot_wf bag-member_wf bag-co-restrict_wf bag_wf deq_wf assert_wf eqof_wf not_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bnot safe-assert-deq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution extract_by_obid isectElimination because_Cache sqequalRule lambdaEquality applyEquality setElimination rename hypothesisEquality hypothesis cumulativity productElimination independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination isect_memberEquality universeEquality independent_pairFormation impliesFunctionality promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (\mneg{}x  \mdownarrow{}\mmember{}  (b|\mneg{}x))



Date html generated: 2018_05_21-PM-09_52_45
Last ObjectModification: 2017_07_26-PM-06_32_04

Theory : bags_2


Home Index