Nuprl Lemma : bag-union-single
∀x:Top List. (bag-union({x}) ~ x)
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
single-bag: {x}
, 
list: T List
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
single-bag: {x}
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
reduce_cons_lemma, 
reduce_nil_lemma, 
append_back_nil, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}x:Top  List.  (bag-union(\{x\})  \msim{}  x)
Date html generated:
2016_05_15-PM-02_27_21
Last ObjectModification:
2015_12_27-AM-09_51_18
Theory : bags
Home
Index