Nuprl Lemma : cons-bag-as-append
∀[x,b:Top].  (x.b ~ {x} + b)
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
cons-bag: x.b
, 
single-bag: {x}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
single-bag: {x}
, 
bag-append: as + bs
, 
cons-bag: x.b
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[x,b:Top].    (x.b  \msim{}  \{x\}  +  b)
Date html generated:
2016_05_15-PM-02_22_36
Last ObjectModification:
2015_12_27-AM-09_54_38
Theory : bags
Home
Index