Nuprl Lemma : cons-bag-as-append

[x,b:Top].  (x.b {x} b)


Proof




Definitions occuring in Statement :  bag-append: as bs cons-bag: x.b single-bag: {x} uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  single-bag: {x} bag-append: as bs cons-bag: x.b append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x]
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[x,b:Top].    (x.b  \msim{}  \{x\}  +  b)



Date html generated: 2016_05_15-PM-02_22_36
Last ObjectModification: 2015_12_27-AM-09_54_38

Theory : bags


Home Index