Nuprl Lemma : bag-size-rep

[n:ℕ]. ∀[x:Top].  (#(bag-rep(n;x)) n)


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) bag-size: #(bs) nat: uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: bag-rep: bag-rep(n;x) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf primrec-unroll bag_size_empty_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bag_size_cons_lemma int_subtype_base decidable__equal_int itermAdd_wf int_term_value_add_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache promote_hyp instantiate cumulativity minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:Top].    (\#(bag-rep(n;x))  \msim{}  n)



Date html generated: 2017_10_01-AM-08_51_58
Last ObjectModification: 2017_07_26-PM-04_33_43

Theory : bags


Home Index