Nuprl Lemma : bag-summation-reindex

[R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R].
  ∀[T,A:Type]. ∀[g:T ⟶ A]. ∀[h:A ⟶ T]. ∀[f:T ⟶ R].
    ∀[b:bag(T)]. (x∈b). f[x] = Σ(x∈bag-map(g;b)). f[h x] ∈ R) supposing ∀x:T. (x (h (g x)) ∈ T) 
  supposing Comm(R;add) ∧ Assoc(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-map: bag-map(f;bs) bag: bag(T) comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] squash: T uimplies: supposing a cand: c∧ B prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  bag-summation-map bag-subtype-list bag-summation_wf equal_wf squash_wf true_wf iff_weakening_equal bag_wf all_wf comm_wf assoc_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality productElimination hypothesisEquality applyEquality dependent_functionElimination hypothesis lambdaEquality imageElimination because_Cache independent_isectElimination independent_pairFormation equalityTransitivity equalitySymmetry functionExtensionality cumulativity natural_numberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination functionEquality productEquality isect_memberFormation axiomEquality

Latex:
\mforall{}[R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].
    \mforall{}[T,A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[h:A  {}\mrightarrow{}  T].  \mforall{}[f:T  {}\mrightarrow{}  R].
        \mforall{}[b:bag(T)].  (\mSigma{}(x\mmember{}b).  f[x]  =  \mSigma{}(x\mmember{}bag-map(g;b)).  f[h  x])  supposing  \mforall{}x:T.  (x  =  (h  (g  x))) 
    supposing  Comm(R;add)  \mwedge{}  Assoc(R;add)



Date html generated: 2017_10_01-AM-08_51_12
Last ObjectModification: 2017_07_26-PM-04_33_10

Theory : bags


Home Index