Nuprl Lemma : bag-co-restrict-disjoint

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b|¬x) b ∈ bag(T) supposing ¬x ↓∈ b


Proof




Definitions occuring in Statement :  bag-co-restrict: (b|¬x) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T exists: x:A. B[x] prop: not: ¬A implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bag-co-restrict: (b|¬x) bag-filter: [x∈b|p[x]] deq: EqDecider(T) so_apply: x[s] so_lambda: λ2x.t[x] uiff: uiff(P;Q) eqof: eqof(d) subtype_rel: A ⊆B false: False
Lemmas referenced :  bag_to_squash_list not_wf bag-member_wf bag-member-list decidable-equal-deq l_member_wf equal_wf bag_wf bag-co-restrict_wf deq_wf filter_trivial bnot_wf l_all_iff assert_wf iff_transitivity eqof_wf iff_weakening_uiff assert_of_bnot safe-assert-deq list-subtype-bag and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality cumulativity rename lambdaFormation independent_functionElimination dependent_functionElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity universeEquality lambdaEquality applyEquality setElimination independent_isectElimination setEquality addLevel independent_pairFormation impliesFunctionality dependent_set_memberEquality voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b|\mneg{}x)  =  b  supposing  \mneg{}x  \mdownarrow{}\mmember{}  b



Date html generated: 2018_05_21-PM-09_52_52
Last ObjectModification: 2017_07_26-PM-06_32_08

Theory : bags_2


Home Index