Nuprl Lemma : bag-co-restrict-disjoint
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (b|¬x) = b ∈ bag(T) supposing ¬x ↓∈ b
Proof
Definitions occuring in Statement : 
bag-co-restrict: (b|¬x)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
bag-co-restrict: (b|¬x)
, 
bag-filter: [x∈b|p[x]]
, 
deq: EqDecider(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
subtype_rel: A ⊆r B
, 
false: False
Lemmas referenced : 
bag_to_squash_list, 
not_wf, 
bag-member_wf, 
bag-member-list, 
decidable-equal-deq, 
l_member_wf, 
equal_wf, 
bag_wf, 
bag-co-restrict_wf, 
deq_wf, 
filter_trivial, 
bnot_wf, 
l_all_iff, 
assert_wf, 
iff_transitivity, 
eqof_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq, 
list-subtype-bag, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
rename, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
universeEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
independent_isectElimination, 
setEquality, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (b|\mneg{}x)  =  b  supposing  \mneg{}x  \mdownarrow{}\mmember{}  b
Date html generated:
2018_05_21-PM-09_52_52
Last ObjectModification:
2017_07_26-PM-06_32_08
Theory : bags_2
Home
Index