Nuprl Lemma : l_all-l_contains
∀[T:Type]. ∀[L1,L2:T List].  (L1 ⊆ L2 
⇒ (∀P:T ⟶ ℙ. ((∀x∈L2.P[x]) 
⇒ (∀x∈L1.P[x]))))
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
l_all: (∀x∈L.P[x])
, 
l_contains: A ⊆ B
, 
member: t ∈ T
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
lelt_wf, 
length_wf, 
and_wf, 
equal_wf, 
int_seg_wf, 
l_all_wf, 
l_member_wf, 
l_contains_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
rename, 
setElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
addLevel, 
levelHypothesis, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
lambdaEquality, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
natural_numberEquality, 
functionExtensionality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  \msubseteq{}  L2  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}x\mmember{}L2.P[x])  {}\mRightarrow{}  (\mforall{}x\mmember{}L1.P[x]))))
Date html generated:
2016_10_21-AM-10_05_25
Last ObjectModification:
2016_07_12-AM-05_25_17
Theory : list_1
Home
Index