Nuprl Lemma : l_all-l_contains

[T:Type]. ∀[L1,L2:T List].  (L1 ⊆ L2  (∀P:T ⟶ ℙ((∀x∈L2.P[x])  (∀x∈L1.P[x]))))


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] l_all: (∀x∈L.P[x]) l_contains: A ⊆ B member: t ∈ T l_member: (x ∈ l) exists: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  lelt_wf length_wf and_wf equal_wf int_seg_wf l_all_wf l_member_wf l_contains_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination rename setElimination dependent_set_memberEquality independent_pairFormation hypothesis cut introduction extract_by_obid isectElimination cumulativity addLevel levelHypothesis equalitySymmetry equalityTransitivity applyEquality lambdaEquality setEquality hyp_replacement Error :applyLambdaEquality,  sqequalRule natural_numberEquality functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  \msubseteq{}  L2  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}x\mmember{}L2.P[x])  {}\mRightarrow{}  (\mforall{}x\mmember{}L1.P[x]))))



Date html generated: 2016_10_21-AM-10_05_25
Last ObjectModification: 2016_07_12-AM-05_25_17

Theory : list_1


Home Index