Nuprl Lemma : bag-summation-product
∀[r:Rng]. ∀[A,B:Type]. ∀[f:A ⟶ |r|]. ∀[c:bag(B)]. ∀[g:B ⟶ |r|]. ∀[b:bag(A)].
  ((Σ(x∈b). f[x] * Σ(y∈c). g[y]) = Σ(p∈b × c). f[fst(p)] * g[snd(p)] ∈ |r|)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag-product: bs × cs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_times: *
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
comm: Comm(T;op)
, 
rng: Rng
, 
rng_sig: RngSig
, 
prop: ℙ
, 
and: P ∧ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
empty-bag: {}
, 
top: Top
, 
single-bag: {x}
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_plus_comm, 
rng_properties, 
rng_all_properties, 
bool_wf, 
unit_wf2, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
bag_to_squash_list, 
list_induction, 
equal_wf, 
infix_ap_wf, 
bag-summation_wf, 
list-subtype-bag, 
bag-product_wf, 
list_wf, 
bag_wf, 
rng_wf, 
bag-product-empty, 
rng_times_zero, 
bag-summation-empty, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
single-bag_wf, 
bag-subtype-list, 
subtype_rel_list, 
top_wf, 
bag-map_wf, 
bag-product-append, 
bag-product-single, 
pi1_wf, 
pi2_wf, 
bag-summation-single, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
bag-summation-append, 
bag-summation-map, 
bag-summation-linear1, 
rng_times_over_plus, 
group_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_pairEquality, 
productEquality, 
functionEquality, 
cumulativity, 
unionEquality, 
promote_hyp, 
because_Cache, 
imageElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation
Latex:
\mforall{}[r:Rng].  \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[c:bag(B)].  \mforall{}[g:B  {}\mrightarrow{}  |r|].  \mforall{}[b:bag(A)].
    ((\mSigma{}(x\mmember{}b).  f[x]  *  \mSigma{}(y\mmember{}c).  g[y])  =  \mSigma{}(p\mmember{}b  \mtimes{}  c).  f[fst(p)]  *  g[snd(p)])
Date html generated:
2017_10_01-AM-08_51_24
Last ObjectModification:
2017_07_26-PM-04_33_17
Theory : bags
Home
Index