Nuprl Lemma : bag-parts'_wf2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-parts'(eq;bs;x) ∈ bag({L:bag(T) List+| ¬x ↓∈ hd(L)} )) suppos\000Cing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-parts': bag-parts'(eq;bs;x)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
listp: A List+
, 
hd: hd(l)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
listp: A List+
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
bag_wf, 
deq_wf, 
valueall-type_wf, 
bag-subtype, 
listp_wf, 
bag-parts'_wf, 
not_wf, 
bag-member_wf, 
hd_wf, 
listp_properties, 
subtype_rel_bag, 
subtype_rel_sets, 
bag-member-parts'
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
setEquality, 
cumulativity, 
setElimination, 
rename, 
lambdaEquality, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
productElimination
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
        (bag-parts'(eq;bs;x)  \mmember{}  bag(\{L:bag(T)  List\msupplus{}|  \mneg{}x  \mdownarrow{}\mmember{}  hd(L)\}  )) 
    supposing  valueall-type(T)
Date html generated:
2016_05_15-PM-08_08_01
Last ObjectModification:
2015_12_27-PM-04_13_19
Theory : bags_2
Home
Index