Nuprl Lemma : bag-parts'_wf2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-parts'(eq;bs;x) ∈ bag({L:bag(T) List+| ¬x ↓∈ hd(L)} )) suppos\000Cing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-parts': bag-parts'(eq;bs;x) bag-member: x ↓∈ bs bag: bag(T) listp: List+ hd: hd(l) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] listp: List+ prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q not: ¬A false: False uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  bag_wf deq_wf valueall-type_wf bag-subtype listp_wf bag-parts'_wf not_wf bag-member_wf hd_wf listp_properties subtype_rel_bag subtype_rel_sets bag-member-parts'
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality applyEquality dependent_functionElimination independent_isectElimination setEquality cumulativity setElimination rename lambdaEquality lambdaFormation independent_functionElimination voidElimination productElimination

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
        (bag-parts'(eq;bs;x)  \mmember{}  bag(\{L:bag(T)  List\msupplus{}|  \mneg{}x  \mdownarrow{}\mmember{}  hd(L)\}  )) 
    supposing  valueall-type(T)



Date html generated: 2016_05_15-PM-08_08_01
Last ObjectModification: 2015_12_27-PM-04_13_19

Theory : bags_2


Home Index