Nuprl Lemma : general_length_nth_tl

[r:ℕ]. ∀[L:Top List].  (||nth_tl(r;L)|| if r <||L|| then ||L|| else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| nth_tl: nth_tl(n;as) list: List nat: ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] top: Top subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff subtract: m btrue: tt decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T le: A ≤ B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) guard: {T} subtype_rel: A ⊆B true: True iff: ⇐⇒ Q cons: [a b] rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf top_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf lt_int_wf length_wf bool_wf equal-wf-T-base assert_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_int_wf le_wf bnot_wf non_neg_length uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf equal-wf-base int_subtype_base bnot_of_le_int tl_wf nth_tl_wf squash_wf true_wf ifthenelse_wf length_tl iff_weakening_equal list-cases reduce_tl_nil_lemma nth_tl_nil length_of_nil_lemma product_subtype_list reduce_tl_cons_lemma nil_wf length_of_null_list nth_tl_is_nil length_of_cons_lemma itermAdd_wf int_term_value_add_lemma le_weakening2 length_nth_tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination because_Cache baseClosed imageElimination productElimination equalityElimination equalityTransitivity equalitySymmetry baseApply closedConclusion applyEquality universeEquality imageMemberEquality promote_hyp hypothesis_subsumption equalityUniverse levelHypothesis dependent_set_memberEquality addEquality minusEquality

Latex:
\mforall{}[r:\mBbbN{}].  \mforall{}[L:Top  List].    (||nth\_tl(r;L)||  =  if  r  <z  ||L||  then  ||L||  -  r  else  0  fi  )



Date html generated: 2018_05_21-PM-06_54_14
Last ObjectModification: 2017_07_26-PM-04_59_10

Theory : general


Home Index