Nuprl Lemma : nth_tl_is_nil

[n:ℕ]. ∀[L:Top List].  nth_tl(n;L) [] supposing ||L|| ≤ n


Proof




Definitions occuring in Statement :  length: ||as|| nth_tl: nth_tl(n;as) nil: [] list: List nat: uimplies: supposing a uall: [x:A]. B[x] top: Top le: A ≤ B sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B guard: {T} cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B bool: 𝔹 unit: Unit uiff: uiff(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf top_wf list_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf equal-wf-T-base colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal_wf subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma non_neg_length le_int_wf bool_wf equal-wf-base assert_wf lt_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int tl_wf reduce_tl_nil_lemma reduce_tl_cons_lemma add-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom equalityTransitivity equalitySymmetry unionElimination applyEquality because_Cache promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination baseApply closedConclusion equalityElimination pointwiseFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Top  List].    nth\_tl(n;L)  \msim{}  []  supposing  ||L||  \mleq{}  n



Date html generated: 2017_04_17-AM-07_53_04
Last ObjectModification: 2017_02_27-PM-04_25_26

Theory : list_1


Home Index