Nuprl Lemma : hdp_wf

[a:Type]. ∀[L:a List+].  (hdp(L) ∈ a)


Proof




Definitions occuring in Statement :  hdp: hdp(L) listp: List+ uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdp: hdp(L) listp: List+ uimplies: supposing a
Lemmas referenced :  hd_wf listp_properties listp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality setElimination rename hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[a:Type].  \mforall{}[L:a  List\msupplus{}].    (hdp(L)  \mmember{}  a)



Date html generated: 2016_05_14-PM-01_30_15
Last ObjectModification: 2015_12_26-PM-05_23_05

Theory : list_1


Home Index