Nuprl Lemma : hdp_wf
∀[a:Type]. ∀[L:a List+].  (hdp(L) ∈ a)
Proof
Definitions occuring in Statement : 
hdp: hdp(L)
, 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hdp: hdp(L)
, 
listp: A List+
, 
uimplies: b supposing a
Lemmas referenced : 
hd_wf, 
listp_properties, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[a:Type].  \mforall{}[L:a  List\msupplus{}].    (hdp(L)  \mmember{}  a)
Date html generated:
2016_05_14-PM-01_30_15
Last ObjectModification:
2015_12_26-PM-05_23_05
Theory : list_1
Home
Index