Nuprl Lemma : l_contains-firstn

[T:Type]. ∀L:T List. ∀n:ℕ.  firstn(n;L) ⊆ L


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B firstn: firstn(n;as) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B l_all: (∀x∈L.P[x]) member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q int_iseg: {i...j} and: P ∧ Q cand: c∧ B guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) less_than: a < b
Lemmas referenced :  top_wf subtype_rel_list firstn_all false_wf int_seg_subtype select_member iff_weakening_equal int_formula_prop_less_lemma intformless_wf select_firstn true_wf squash_wf l_member_wf le_wf and_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_properties length_firstn decidable__le list_wf nat_wf firstn_wf length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality setElimination rename hypothesis universeEquality dependent_functionElimination unionElimination sqequalRule dependent_set_memberEquality productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.    firstn(n;L)  \msubseteq{}  L



Date html generated: 2016_05_14-PM-02_08_53
Last ObjectModification: 2016_01_15-AM-08_02_52

Theory : list_1


Home Index