Nuprl Lemma : bag-no-repeats-settype

[T:Type]. ∀[bs:bag(T)].  uiff(bag-no-repeats({x:T| x ↓∈ bs} ;bs);bag-no-repeats(T;bs)) supposing ∀x,y:T.  Dec(x y ∈ T\000C)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) decidable: Dec(P) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q bag-no-repeats: bag-no-repeats(T;bs) squash: T prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B cand: c∧ B guard: {T} implies:  Q l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b
Lemmas referenced :  bag-no-repeats_wf bag-member_wf bag-subtype all_wf decidable_wf equal_wf bag_wf subtype_rel_list subtype_rel_bag equal_functionality_wrt_subtype_rel2 no_repeats-settype list-subtype-bag no_repeats_wf subtype_rel_self list-set-type2 bag-member-select select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf no_repeats-subtype bag-settype and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination setEquality cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_pairEquality isect_memberEquality because_Cache lambdaEquality universeEquality dependent_pairFormation applyEquality independent_isectElimination setElimination rename independent_functionElimination productEquality lambdaFormation hyp_replacement applyLambdaEquality natural_numberEquality unionElimination int_eqEquality intEquality voidElimination voidEquality computeAll dependent_set_memberEquality addLevel levelHypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(bag-no-repeats(\{x:T|  x  \mdownarrow{}\mmember{}  bs\}  ;bs);bag-no-repeats(T;bs))  supposing  \mforall{}x\000C,y:T.    Dec(x  =  y)



Date html generated: 2017_10_01-AM-09_01_12
Last ObjectModification: 2017_07_26-PM-04_42_21

Theory : bags


Home Index