Nuprl Lemma : no_repeats-settype

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[L:{x:T| P[x]}  List].  uiff(no_repeats(T;L);no_repeats({x:T| P[x]} ;L))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) list: List uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B prop: implies:  Q so_lambda: λ2x.t[x]
Lemmas referenced :  no_repeats-subtype no_repeats_witness no_repeats_wf subtype_rel_list no_repeats-strong-subtype strong-subtype-set3 strong-subtype-self list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setEquality applyEquality hypothesis lambdaEquality sqequalRule universeEquality independent_isectElimination setElimination rename because_Cache independent_functionElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:\{x:T|  P[x]\}    List].    uiff(no\_repeats(T;L);no\_repeats(\{x:T|  P[x]\}  ;L))



Date html generated: 2016_05_14-PM-01_27_06
Last ObjectModification: 2015_12_26-PM-04_50_39

Theory : list_1


Home Index