Nuprl Lemma : bag-rep-size-restrict
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (bag-rep(#((b|x));x) = (b|x) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-restrict: (b|x), 
bag-rep: bag-rep(n;x), 
bag-size: #(bs), 
bag: bag(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
exists: ∃x:A. B[x], 
bag-restrict: (b|x), 
bag-size: #(bs), 
bag-rep: bag-rep(n;x), 
bag-filter: [x∈b|p[x]], 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
prop: ℙ, 
deq: EqDecider(T), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
empty-bag: {}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
eqof: eqof(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
ge: i ≥ j , 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cons-bag: x.b, 
true: True
Lemmas referenced : 
bag_to_squash_list, 
list_induction, 
equal_wf, 
bag_wf, 
primrec_wf, 
length_wf_nat, 
filter_wf5, 
l_member_wf, 
empty-bag_wf, 
cons-bag_wf, 
int_seg_wf, 
length_wf, 
list-subtype-bag, 
list_wf, 
filter_nil_lemma, 
length_of_nil_lemma, 
primrec0_lemma, 
nil_wf, 
filter_cons_lemma, 
bag-rep_wf, 
bag-size_wf, 
bag-restrict_wf, 
deq_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
length_of_cons_lemma, 
primrec-unroll, 
eq_int_wf, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
non_neg_length, 
eqof_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
lambdaFormation, 
setElimination, 
applyEquality, 
setEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
axiomEquality, 
universeEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
addEquality, 
dependent_pairFormation, 
instantiate, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (bag-rep(\#((b|x));x)  =  (b|x))
Date html generated:
2018_05_21-PM-09_52_42
Last ObjectModification:
2017_07_26-PM-06_32_01
Theory : bags_2
Home
Index