Nuprl Lemma : bag-rep-size-restrict

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  (bag-rep(#((b|x));x) (b|x) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-restrict: (b|x) bag-rep: bag-rep(n;x) bag-size: #(bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] bag-restrict: (b|x) bag-size: #(bs) bag-rep: bag-rep(n;x) bag-filter: [x∈b|p[x]] so_lambda: λ2x.t[x] all: x:A. B[x] prop: deq: EqDecider(T) subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q top: Top empty-bag: {} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) cons-bag: x.b true: True
Lemmas referenced :  bag_to_squash_list list_induction equal_wf bag_wf primrec_wf length_wf_nat filter_wf5 l_member_wf empty-bag_wf cons-bag_wf int_seg_wf length_wf list-subtype-bag list_wf filter_nil_lemma length_of_nil_lemma primrec0_lemma nil_wf filter_cons_lemma bag-rep_wf bag-size_wf bag-restrict_wf deq_wf bool_wf eqtt_to_assert safe-assert-deq length_of_cons_lemma primrec-unroll eq_int_wf assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int non_neg_length eqof_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf squash_wf true_wf add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename sqequalRule lambdaEquality cumulativity lambdaFormation setElimination applyEquality setEquality natural_numberEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality axiomEquality universeEquality unionElimination equalityElimination equalityTransitivity addEquality dependent_pairFormation instantiate int_eqEquality intEquality independent_pairFormation computeAll imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    (bag-rep(\#((b|x));x)  =  (b|x))



Date html generated: 2018_05_21-PM-09_52_42
Last ObjectModification: 2017_07_26-PM-06_32_01

Theory : bags_2


Home Index