Nuprl Lemma : fps-id-ucont
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  fps-ucont(X;eq;r;f.f)
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
fps-restrict: fps-restrict(eq;r;f;d)
, 
fps-coeff: f[b]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
ifthenelse: if b then t else f fi 
, 
power-series: PowerSeries(X;r)
, 
bfalse: ff
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
crng: CRng
, 
rng: Rng
, 
so_apply: x[s]
Lemmas referenced : 
deq-sub-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
sub-bag_weakening, 
power-series_wf, 
all_wf, 
rng_car_wf, 
fps-coeff_wf, 
fps-restrict_wf, 
bag_wf, 
crng_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
promote_hyp, 
instantiate, 
voidElimination, 
lambdaEquality, 
setElimination, 
rename, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    fps-ucont(X;eq;r;f.f)
Date html generated:
2018_05_21-PM-10_11_11
Last ObjectModification:
2017_07_26-PM-06_34_36
Theory : power!series
Home
Index