Nuprl Lemma : sub-bag_weakening

[T:Type]. ∀[as,bs:bag(T)].  ((as bs ∈ bag(T))  sub-bag(T;as;bs))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag: bag(T) uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  empty-bag_wf equal_wf squash_wf true_wf bag-append_wf iff_weakening_equal bag-append-ident bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis equalitySymmetry applyEquality lambdaEquality imageElimination equalityTransitivity because_Cache equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    ((as  =  bs)  {}\mRightarrow{}  sub-bag(T;as;bs))



Date html generated: 2017_10_01-AM-08_52_50
Last ObjectModification: 2017_07_26-PM-04_34_17

Theory : bags


Home Index