Nuprl Lemma : assert-deq-sub-bag

[T:Type]. ∀eq:EqDecider(T). ∀as,bs:bag(T).  (↑deq-sub-bag(eq;as;bs) ⇐⇒ sub-bag(T;as;bs))


Proof




Definitions occuring in Statement :  deq-sub-bag: deq-sub-bag(eq;as;bs) sub-bag: sub-bag(T;as;bs) bag: bag(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  member: t ∈ T deq-sub-bag: deq-sub-bag(eq;as;bs) all: x:A. B[x] uall: [x:A]. B[x] decidable__sub-bag deq-exists decidable_functionality iff_preserves_decidability sub-bag-iff decidable__assert not: ¬A false: False bfalse: ff true: True rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  assert: b or: P ∨ Q decidable: Dec(P) prop: implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  deq_wf bag_wf false_wf true_wf deq-witness_wf sub-bag_wf equal_wf decidable_wf decidable__sub-bag deq-exists decidable_functionality iff_preserves_decidability sub-bag-iff decidable__assert
Rules used in proof :  universeEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule dependent_functionElimination independent_functionElimination voidElimination natural_numberEquality independent_pairFormation unionElimination because_Cache functionEquality cumulativity isectEquality equalitySymmetry equalityTransitivity lambdaEquality instantiate applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).    (\muparrow{}deq-sub-bag(eq;as;bs)  \mLeftarrow{}{}\mRightarrow{}  sub-bag(T;as;bs))



Date html generated: 2020_05_20-AM-09_04_48
Last ObjectModification: 2020_01_27-PM-04_02_53

Theory : bags_2


Home Index