Nuprl Lemma : decidable__sub-bag
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀as,bs:bag(T).  Dec(sub-bag(T;as;bs))))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bag-member_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
decidable__le, 
bag-member-count, 
assert_of_le_int, 
decidable-equal-deq, 
decidable__bag-member, 
less_than'_wf, 
assert-bag-all, 
not_wf, 
equal_wf, 
decidable_wf, 
bag_wf, 
le_int_wf, 
bag-all_wf, 
decidable__assert, 
nat_wf, 
bag-count_wf, 
le_wf, 
all_wf, 
sub-bag_wf, 
decidable_functionality, 
sub-bag-iff, 
deq-exists
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
rename, 
promote_hyp, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
because_Cache, 
universeEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
independent_pairFormation, 
introduction, 
independent_pairEquality, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
setEquality, 
intEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}as,bs:bag(T).    Dec(sub-bag(T;as;bs))))
Date html generated:
2016_05_15-PM-08_09_06
Last ObjectModification:
2016_01_16-PM-01_27_53
Theory : bags_2
Home
Index