Nuprl Lemma : deq-sub-bag_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)].  (deq-sub-bag(eq;as;bs) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
deq-sub-bag: deq-sub-bag(eq;as;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
deq-sub-bag: deq-sub-bag(eq;as;bs)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
decidable__sub-bag, 
deq-exists, 
decidable_functionality, 
iff_preserves_decidability, 
sub-bag-iff, 
decidable__assert, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
Lemmas referenced : 
deq_wf, 
bag_wf, 
all_wf, 
deq-witness_wf, 
sub-bag_wf, 
equal_wf, 
decidable_wf, 
decidable__sub-bag, 
bfalse_wf, 
btrue_wf, 
deq-exists, 
decidable_functionality, 
iff_preserves_decidability, 
sub-bag-iff, 
decidable__assert
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
functionEquality, 
cumulativity, 
isectEquality, 
lambdaEquality, 
instantiate, 
applyEquality, 
unionElimination, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].    (deq-sub-bag(eq;as;bs)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_20-AM-09_04_45
Last ObjectModification:
2020_01_28-PM-04_15_57
Theory : bags_2
Home
Index