Nuprl Lemma : fps-atom_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X].  (atom(x) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-atom: atom(x) power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-atom: atom(x) all: x:A. B[x]
Lemmas referenced :  fps-single_wf single-bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].    (atom(x)  \mmember{}  PowerSeries(X;r))



Date html generated: 2016_05_15-PM-09_47_27
Last ObjectModification: 2015_12_27-PM-04_40_56

Theory : power!series


Home Index