Nuprl Lemma : fps-atom_wf
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. (atom(x) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement :
fps-atom: atom(x)
,
power-series: PowerSeries(X;r)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fps-atom: atom(x)
,
all: ∀x:A. B[x]
Lemmas referenced :
fps-single_wf,
single-bag_wf,
crng_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[X:Type]. \mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[x:X]. (atom(x) \mmember{} PowerSeries(X;r))
Date html generated:
2016_05_15-PM-09_47_27
Last ObjectModification:
2015_12_27-PM-04_40_56
Theory : power!series
Home
Index