Nuprl Lemma : fps-compose-add
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f,h:PowerSeries(X;r)].
((g+h)(x:=f) = (g(x:=f)+h(x:=f)) ∈ PowerSeries(X;r))
supposing valueall-type(X)
Proof
Definitions occuring in Statement :
fps-compose: g(x:=f)
,
fps-add: (f+g)
,
power-series: PowerSeries(X;r)
,
deq: EqDecider(T)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
fps-compose: g(x:=f)
,
fps-add: (f+g)
,
power-series: PowerSeries(X;r)
,
fps-coeff: f[b]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
crng: CRng
,
comm: Comm(T;op)
,
and: P ∧ Q
,
cand: A c∧ B
,
rng: Rng
,
listp: A List+
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
true: True
,
infix_ap: x f y
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ring_p: IsRing(T;plus;zero;neg;times;one)
,
group_p: IsGroup(T;op;id;inv)
Lemmas referenced :
bag-parts'_wf,
bag_wf,
listp_wf,
rng_plus_comm,
crng_properties,
rng_all_properties,
listp_properties,
bag-product_wf,
rng_car_wf,
rng_times_wf,
rng_one_wf,
tl_wf,
list-subtype-bag,
equal_wf,
power-series_wf,
crng_wf,
deq_wf,
valueall-type_wf,
rng_plus_wf,
rng_zero_wf,
bag-append_wf,
hd_wf,
bag-rep_wf,
length_wf_nat,
bag-summation_wf,
infix_ap_wf,
bag-summation-add,
rng_properties,
squash_wf,
true_wf,
assoc_wf,
comm_wf,
rng_times_over_plus,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lambdaEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
independent_isectElimination,
hypothesis,
lambdaFormation,
setElimination,
rename,
productElimination,
because_Cache,
independent_pairFormation,
applyEquality,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
isect_memberEquality,
axiomEquality,
universeEquality,
natural_numberEquality,
imageElimination,
productEquality,
functionExtensionality,
functionEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[x:X]. \mforall{}[g,f,h:PowerSeries(X;r)].
((g+h)(x:=f) = (g(x:=f)+h(x:=f)))
supposing valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_36
Last ObjectModification:
2017_07_26-PM-06_33_57
Theory : power!series
Home
Index