Nuprl Lemma : fps-compose-scalar-mul

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:|r|]. ∀[x:X]. ∀[g,f:PowerSeries(X;r)].
    ((c)*g(x:=f) (c)*g(x:=f) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-scalar-mul: (c)*f power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-compose: g(x:=f) fps-scalar-mul: (c)*f power-series: PowerSeries(X;r) fps-coeff: f[b] all: x:A. B[x] implies:  Q crng: CRng comm: Comm(T;op) and: P ∧ Q cand: c∧ B rng: Rng listp: List+ subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: exists: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q ring_p: IsRing(T;plus;zero;neg;times;one)
Lemmas referenced :  bag-parts'_wf bag_wf listp_wf rng_plus_comm crng_properties rng_all_properties listp_properties bag-product_wf rng_car_wf rng_times_wf rng_one_wf tl_wf list-subtype-bag bag-summation-linear1 rng_plus_wf equal_wf squash_wf true_wf bag-summation_wf rng_zero_wf infix_ap_wf bag-append_wf hd_wf bag-rep_wf length_wf_nat rng_minus_wf rng_properties group_p_wf iff_weakening_equal power-series_wf crng_wf deq_wf valueall-type_wf assoc_wf comm_wf rng_times_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality independent_isectElimination hypothesis lambdaFormation setElimination rename productElimination because_Cache independent_pairFormation applyEquality imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination dependent_pairFormation functionExtensionality natural_numberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination isect_memberEquality axiomEquality productEquality functionEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[x:X].  \mforall{}[g,f:PowerSeries(X;r)].
        ((c)*g(x:=f)  =  (c)*g(x:=f)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_43
Last ObjectModification: 2017_07_26-PM-06_34_00

Theory : power!series


Home Index