Nuprl Lemma : fps-scalar-mul_wf

[X:Type]. ∀[r:CRng]. ∀[c:|r|]. ∀[f:PowerSeries(X;r)].  ((c)*f ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-scalar-mul: (c)*f power-series: PowerSeries(X;r) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-scalar-mul: (c)*f infix_ap: y crng: CRng rng: Rng subtype_rel: A ⊆B power-series: PowerSeries(X;r)
Lemmas referenced :  rng_times_wf fps-coeff_wf bag_wf rng_car_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[f:PowerSeries(X;r)].    ((c)*f  \mmember{}  PowerSeries(X;r))



Date html generated: 2016_05_15-PM-09_51_04
Last ObjectModification: 2015_12_27-PM-04_38_44

Theory : power!series


Home Index