Nuprl Lemma : fps-compose-atom-neq

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X].
    ∀[f:PowerSeries(X;r)]. (atom(y)(x:=f) atom(y) ∈ PowerSeries(X;r)) supposing ¬(x y ∈ X) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-atom: atom(x) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng comm: Comm(T;op) rng: Rng and: P ∧ Q cand: c∧ B prop: all: x:A. B[x] listp: List+ subtype_rel: A ⊆B so_lambda: λ2x.t[x] power-series: PowerSeries(X;r) so_apply: x[s] uiff: uiff(P;Q) fps-atom: atom(x) fps-coeff: f[b] fps-compose: g(x:=f) fps-single: <c> not: ¬A implies:  Q false: False ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q tlp: tlp(L) hdp: hdp(L) true: True bag-member: x ↓∈ bs sq_stable: SqStable(P) nat: ge: i ≥  le: A ≤ B less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] cons: [a b] satisfiable_int_formula: satisfiable_int_formula(fmla) single-bag: {x} bag-null: bag-null(bs) null: null(as) bag-union: bag-union(bbs) concat: concat(ll) reduce: reduce(f;k;as) append: as bs istype: istype(T) rev_uimplies: rev_uimplies(P;Q) bag-rep: bag-rep(n;x) bag-product: Πx ∈ b. f[x] bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] tl: tl(l) pi2: snd(t) infix_ap: y list_accum: list_accum rng_one: 1 pi1: fst(t) empty-bag: {} rng_zero: 0
Lemmas referenced :  rng_plus_comm crng_properties rng_properties rng_all_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf bag-product_wf bag_wf tl_wf list-subtype-bag listp_wf fps-ext fps-compose_wf fps-atom_wf power-series_wf istype-void crng_wf deq_wf valueall-type_wf istype-universe bag-summation_wf squash_wf assoc_wf comm_wf bag-eq_wf bag-append_wf hd_wf listp_properties bag-rep_wf length_wf_nat single-bag_wf eqtt_to_assert assert-bag-eq rng_times_one eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf rng_times_zero bag-parts'_wf crng_all_properties true_wf ifthenelse_wf bag-summation-filter hdp_wf tlp_wf subtype_rel_self iff_weakening_equal bag-extensionality-no-repeats bag-filter_wf subtype_rel_bag istype-assert bag-null_wf empty-bag_wf cons-listp nil_wf assert-bag-null empty-bag-no-repeats equal-wf-T-base bag-single-no-repeats bag-member_wf decidable__equal_set list_wf decidable__equal_list decidable__equal_bag decidable-equal-deq less_than_wf length_wf bag-filter-no-repeats bag-parts'-no-repeats bag-member-filter bag-append-is-single sq_stable__bag-member bag-size_wf istype-nat bag_size_empty_lemma bag-size-rep list-cases product_subtype_list reduce_tl_cons_lemma reduce_hd_cons_lemma length_of_cons_lemma bag-member-parts' non_neg_length full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf bag-member-single cons_wf istype-less_than bag-union_wf uiff_transitivity iff_transitivity bnot_wf not_wf assert_of_bnot cons_wf_listp subtype_rel_set bag_qinc bag-member-empty-iff bag-subtype-list bag-union-single bag_size_single_lemma reduce_tl_nil_lemma length_of_nil_lemma int_subtype_base primrec1_lemma cons_bag_empty_lemma single-bags-equal bool_cases primrec0_lemma bag-append-empty l_all_nil bag-summation-empty list_accum_cons_lemma list_accum_nil_lemma rng_plus_zero list_accum_wf bag_null_empty_lemma btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality_alt universeIsType productElimination independent_pairFormation lambdaFormation_alt because_Cache applyEquality independent_isectElimination sqequalRule lambdaEquality_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsType equalityIstype instantiate universeEquality imageElimination equalityTransitivity equalitySymmetry productEquality dependent_functionElimination unionElimination equalityElimination dependent_pairFormation_alt promote_hyp cumulativity independent_functionElimination voidElimination imageMemberEquality baseClosed hyp_replacement natural_numberEquality applyLambdaEquality setEquality setIsType intEquality Error :memTop,  hypothesis_subsumption approximateComputation int_eqEquality sqequalBase

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].
        \mforall{}[f:PowerSeries(X;r)].  (atom(y)(x:=f)  =  atom(y))  supposing  \mneg{}(x  =  y) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_59
Last ObjectModification: 2019_12_31-PM-04_59_20

Theory : power!series


Home Index