Nuprl Lemma : bag-append-is-single
∀[T:Type]. ∀[x:T].
  ∀as,bs:bag(T).
    ↓((as = {x} ∈ bag(T)) ∧ (bs = {} ∈ bag(T))) ∨ ((bs = {x} ∈ bag(T)) ∧ (as = {} ∈ bag(T))) 
    supposing (as + bs) = {x} ∈ bag(T)
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
single-bag: {x}
, 
empty-bag: {}
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
bag-append: as + bs
, 
append: as @ bs
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
empty-bag: {}
, 
subtype_rel: A ⊆r B
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
respects-equality: respects-equality(S;T)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
single-bag: {x}
, 
bag-size: #(bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
bag_to_squash_list, 
equal_wf, 
bag_wf, 
bag-append_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
empty-bag_wf, 
nil_wf, 
list-subtype-bag, 
single-bag_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
cons_wf, 
squash_wf, 
equal-wf-T-base, 
equal-wf-base, 
equal-wf-base-T, 
istype-nat, 
istype-universe, 
subtype-respects-equality, 
bag-append-ident, 
true_wf, 
bag-size_wf, 
subtype_rel_self, 
iff_weakening_equal, 
list_ind_cons_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
length-append, 
non_neg_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
rename, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
inrFormation_alt, 
productIsType, 
equalityIstype, 
sqequalBase, 
because_Cache, 
closedConclusion, 
voidEquality, 
applyEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
instantiate, 
baseApply, 
intEquality, 
functionEquality, 
unionEquality, 
productEquality, 
functionIsType, 
isectIsTypeImplies, 
universeEquality, 
inlFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}as,bs:bag(T).    \mdownarrow{}((as  =  \{x\})  \mwedge{}  (bs  =  \{\}))  \mvee{}  ((bs  =  \{x\})  \mwedge{}  (as  =  \{\}))  supposing  (as  +  bs)  =  \{x\}
Date html generated:
2019_10_15-AM-11_00_16
Last ObjectModification:
2018_11_30-AM-09_54_48
Theory : bags
Home
Index