Nuprl Lemma : bag-append-is-single

[T:Type]. ∀[x:T].
  ∀as,bs:bag(T).
    ↓((as {x} ∈ bag(T)) ∧ (bs {} ∈ bag(T))) ∨ ((bs {x} ∈ bag(T)) ∧ (as {} ∈ bag(T))) 
    supposing (as bs) {x} ∈ bag(T)


Proof




Definitions occuring in Statement :  bag-append: as bs single-bag: {x} empty-bag: {} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] squash: T or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a squash: T exists: x:A. B[x] prop: nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q or: P ∨ Q guard: {T} cand: c∧ B bag-append: as bs append: as bs list_ind: list_ind nil: [] it: empty-bag: {} subtype_rel: A ⊆B cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) respects-equality: respects-equality(S;T) true: True iff: ⇐⇒ Q rev_implies:  Q single-bag: {x} bag-size: #(bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  bag_to_squash_list equal_wf bag_wf bag-append_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases empty-bag_wf nil_wf list-subtype-bag single-bag_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf cons_wf squash_wf equal-wf-T-base equal-wf-base equal-wf-base-T istype-nat istype-universe subtype-respects-equality bag-append-ident true_wf bag-size_wf subtype_rel_self iff_weakening_equal list_ind_cons_lemma length_of_cons_lemma length_of_nil_lemma length-append non_neg_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity rename setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType imageMemberEquality baseClosed functionIsTypeImplies inhabitedIsType unionElimination inrFormation_alt productIsType equalityIstype sqequalBase because_Cache closedConclusion voidEquality applyEquality hypothesis_subsumption dependent_set_memberEquality_alt instantiate baseApply intEquality functionEquality unionEquality productEquality functionIsType isectIsTypeImplies universeEquality inlFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}as,bs:bag(T).    \mdownarrow{}((as  =  \{x\})  \mwedge{}  (bs  =  \{\}))  \mvee{}  ((bs  =  \{x\})  \mwedge{}  (as  =  \{\}))  supposing  (as  +  bs)  =  \{x\}



Date html generated: 2019_10_15-AM-11_00_16
Last ObjectModification: 2018_11_30-AM-09_54_48

Theory : bags


Home Index