Nuprl Lemma : single-bags-equal

[T:Type]. ∀[x,y:T].  uiff({x} {y} ∈ bag(T);x y ∈ T)


Proof




Definitions occuring in Statement :  single-bag: {x} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x]
Lemmas referenced :  bag-member-single bag-member_wf equal_wf bag_wf single-bag_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality productElimination independent_isectElimination equalitySymmetry hypothesis hyp_replacement Error :applyLambdaEquality,  cumulativity sqequalRule dependent_functionElimination dependent_set_memberEquality applyEquality lambdaEquality setElimination rename setEquality independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(\{x\}  =  \{y\};x  =  y)



Date html generated: 2016_10_25-AM-10_27_20
Last ObjectModification: 2016_07_12-AM-06_43_29

Theory : bags


Home Index