Nuprl Lemma : fps-linear-ucont-equal

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[F,G:PowerSeries(X;r) ⟶ PowerSeries(X;r)].
    G ∈ (PowerSeries(X;r) ⟶ PowerSeries(X;r)) 
    supposing fps-ucont(X;eq;r;f.F[f])
    ∧ fps-ucont(X;eq;r;f.G[f])
    ∧ (∀f,g:PowerSeries(X;r).  (F[(f+g)] (F[f]+F[g]) ∈ PowerSeries(X;r)))
    ∧ (∀f,g:PowerSeries(X;r).  (G[(f+g)] (G[f]+G[g]) ∈ PowerSeries(X;r)))
    ∧ (∀c:|r|. ∀f:PowerSeries(X;r).  (F[(c)*f] (c)*F[f] ∈ PowerSeries(X;r)))
    ∧ (∀c:|r|. ∀f:PowerSeries(X;r).  (G[(c)*f] (c)*G[f] ∈ PowerSeries(X;r)))
    ∧ (∀b:bag(X). (F[<b>G[<b>] ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-ucont: fps-ucont(X;eq;r;f.G[f]) fps-scalar-mul: (c)*f fps-add: (f+g) fps-single: <c> power-series: PowerSeries(X;r) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] fps-ucont: fps-ucont(X;eq;r;f.G[f]) exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] crng: CRng rng: Rng true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cand: c∧ B comm: Comm(T;op) infix_ap: y assoc: Assoc(T;op) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons-bag: x.b monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id) fps-restrict: fps-restrict(eq;r;f;d) fps-coeff: f[b] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A sub-bag: sub-bag(T;as;bs)
Lemmas referenced :  fps-ext power-series_wf bag_wf fps-ucont_wf all_wf equal_wf fps-add_wf rng_car_wf fps-scalar-mul_wf fps-single_wf crng_wf deq_wf valueall-type_wf squash_wf true_wf iff_weakening_equal bag-append_wf fps-coeff_wf sub-bags_wf fps-restrict-summation fps-add-comm mon_assoc_fps bag_to_squash_list list_induction bag-summation_wf fps-zero_wf list-subtype-bag subtype_rel_self list_wf list_accum_nil_lemma empty-bag_wf rng_zero_wf fps-scalar-mul-zero single-bag_wf cons-bag-as-append bag-summation-append abmonoid_comm_fps mon_ident_fps and_wf bag-summation-single fps-restrict_wf deq-sub-bag_wf bool_wf eqtt_to_assert assert-deq-sub-bag eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sub-bag_wf sub-bag_transitivity bag-append-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin functionExtensionality rename extract_by_obid isectElimination hypothesisEquality applyEquality cumulativity hypothesis independent_isectElimination lambdaFormation dependent_functionElimination because_Cache productEquality sqequalRule lambdaEquality setElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed independent_functionElimination independent_pairFormation promote_hyp hyp_replacement applyLambdaEquality voidElimination voidEquality equalityUniverse levelHypothesis independent_pairEquality dependent_set_memberEquality unionElimination equalityElimination dependent_pairFormation instantiate

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[F,G:PowerSeries(X;r)  {}\mrightarrow{}  PowerSeries(X;r)].
        F  =  G 
        supposing  fps-ucont(X;eq;r;f.F[f])
        \mwedge{}  fps-ucont(X;eq;r;f.G[f])
        \mwedge{}  (\mforall{}f,g:PowerSeries(X;r).    (F[(f+g)]  =  (F[f]+F[g])))
        \mwedge{}  (\mforall{}f,g:PowerSeries(X;r).    (G[(f+g)]  =  (G[f]+G[g])))
        \mwedge{}  (\mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    (F[(c)*f]  =  (c)*F[f]))
        \mwedge{}  (\mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    (G[(c)*f]  =  (c)*G[f]))
        \mwedge{}  (\mforall{}b:bag(X).  (F[<b>]  =  G[<b>])) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_11_01
Last ObjectModification: 2017_07_26-PM-06_34_32

Theory : power!series


Home Index