Nuprl Lemma : fps-linear-ucont-equal
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[F,G:PowerSeries(X;r) ⟶ PowerSeries(X;r)].
    F = G ∈ (PowerSeries(X;r) ⟶ PowerSeries(X;r)) 
    supposing fps-ucont(X;eq;r;f.F[f])
    ∧ fps-ucont(X;eq;r;f.G[f])
    ∧ (∀f,g:PowerSeries(X;r).  (F[(f+g)] = (F[f]+F[g]) ∈ PowerSeries(X;r)))
    ∧ (∀f,g:PowerSeries(X;r).  (G[(f+g)] = (G[f]+G[g]) ∈ PowerSeries(X;r)))
    ∧ (∀c:|r|. ∀f:PowerSeries(X;r).  (F[(c)*f] = (c)*F[f] ∈ PowerSeries(X;r)))
    ∧ (∀c:|r|. ∀f:PowerSeries(X;r).  (G[(c)*f] = (c)*G[f] ∈ PowerSeries(X;r)))
    ∧ (∀b:bag(X). (F[<b>] = G[<b>] ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
fps-scalar-mul: (c)*f
, 
fps-add: (f+g)
, 
fps-single: <c>
, 
power-series: PowerSeries(X;r)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
comm: Comm(T;op)
, 
infix_ap: x f y
, 
assoc: Assoc(T;op)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons-bag: x.b
, 
monoid_p: IsMonoid(T;op;id)
, 
ident: Ident(T;op;id)
, 
fps-restrict: fps-restrict(eq;r;f;d)
, 
fps-coeff: f[b]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
sub-bag: sub-bag(T;as;bs)
Lemmas referenced : 
fps-ext, 
power-series_wf, 
bag_wf, 
fps-ucont_wf, 
all_wf, 
equal_wf, 
fps-add_wf, 
rng_car_wf, 
fps-scalar-mul_wf, 
fps-single_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
bag-append_wf, 
fps-coeff_wf, 
sub-bags_wf, 
fps-restrict-summation, 
fps-add-comm, 
mon_assoc_fps, 
bag_to_squash_list, 
list_induction, 
bag-summation_wf, 
fps-zero_wf, 
list-subtype-bag, 
subtype_rel_self, 
list_wf, 
list_accum_nil_lemma, 
empty-bag_wf, 
rng_zero_wf, 
fps-scalar-mul-zero, 
single-bag_wf, 
cons-bag-as-append, 
bag-summation-append, 
abmonoid_comm_fps, 
mon_ident_fps, 
and_wf, 
bag-summation-single, 
fps-restrict_wf, 
deq-sub-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
sub-bag_transitivity, 
bag-append-comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
functionExtensionality, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
because_Cache, 
productEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
voidElimination, 
voidEquality, 
equalityUniverse, 
levelHypothesis, 
independent_pairEquality, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
instantiate
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[F,G:PowerSeries(X;r)  {}\mrightarrow{}  PowerSeries(X;r)].
        F  =  G 
        supposing  fps-ucont(X;eq;r;f.F[f])
        \mwedge{}  fps-ucont(X;eq;r;f.G[f])
        \mwedge{}  (\mforall{}f,g:PowerSeries(X;r).    (F[(f+g)]  =  (F[f]+F[g])))
        \mwedge{}  (\mforall{}f,g:PowerSeries(X;r).    (G[(f+g)]  =  (G[f]+G[g])))
        \mwedge{}  (\mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    (F[(c)*f]  =  (c)*F[f]))
        \mwedge{}  (\mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    (G[(c)*f]  =  (c)*G[f]))
        \mwedge{}  (\mforall{}b:bag(X).  (F[<b>]  =  G[<b>])) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_11_01
Last ObjectModification:
2017_07_26-PM-06_34_32
Theory : power!series
Home
Index