Nuprl Lemma : fps-ucont_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[G:PowerSeries(X;r) ⟶ PowerSeries(X;r)].  (fps-ucont(X;eq;r;f.G[f]) ∈ ℙ)


Proof




Definitions occuring in Statement :  fps-ucont: fps-ucont(X;eq;r;f.G[f]) power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-ucont: fps-ucont(X;eq;r;f.G[f]) so_lambda: λ2x.t[x] crng: CRng rng: Rng so_apply: x[s]
Lemmas referenced :  all_wf bag_wf exists_wf power-series_wf equal_wf rng_car_wf fps-coeff_wf fps-restrict_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[G:PowerSeries(X;r)  {}\mrightarrow{}  PowerSeries(X;r)].
    (fps-ucont(X;eq;r;f.G[f])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-09_57_07
Last ObjectModification: 2015_12_27-PM-04_36_02

Theory : power!series


Home Index