Nuprl Lemma : fps-ucont_wf
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[G:PowerSeries(X;r) ⟶ PowerSeries(X;r)].  (fps-ucont(X;eq;r;f.G[f]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fps-ucont: fps-ucont(X;eq;r;f.G[f])
, 
so_lambda: λ2x.t[x]
, 
crng: CRng
, 
rng: Rng
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
bag_wf, 
exists_wf, 
power-series_wf, 
equal_wf, 
rng_car_wf, 
fps-coeff_wf, 
fps-restrict_wf, 
crng_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[G:PowerSeries(X;r)  {}\mrightarrow{}  PowerSeries(X;r)].
    (fps-ucont(X;eq;r;f.G[f])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-09_57_07
Last ObjectModification:
2015_12_27-PM-04_36_02
Theory : power!series
Home
Index