Nuprl Lemma : mon_ident_fps
∀[X:Type]. ∀[r:CRng]. ∀[a:PowerSeries(X;r)].  (((a+0) = a ∈ PowerSeries(X;r)) ∧ ((0+a) = a ∈ PowerSeries(X;r)))
Proof
Definitions occuring in Statement : 
fps-add: (f+g)
, 
fps-zero: 0
, 
power-series: PowerSeries(X;r)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
fps-zero: 0
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
fps-coeff: f[b]
, 
crng: CRng
, 
rng: Rng
, 
infix_ap: x f y
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-add-comm, 
fps-zero_wf, 
iff_weakening_equal, 
crng_wf, 
bag_wf, 
rng_car_wf, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
functionExtensionality, 
setElimination, 
rename
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a:PowerSeries(X;r)].    (((a+0)  =  a)  \mwedge{}  ((0+a)  =  a))
Date html generated:
2018_05_21-PM-09_56_27
Last ObjectModification:
2017_07_26-PM-06_32_59
Theory : power!series
Home
Index