Nuprl Lemma : fps-restrict-summation

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[d:bag(X)].
    (fps-restrict(eq;r;f;d) = Σ(x∈sub-bags(eq;d)). (f[x])*<x> ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-restrict: fps-restrict(eq;r;f;d) fps-scalar-mul: (c)*f fps-add: (f+g) fps-single: <c> fps-zero: 0 fps-coeff: f[b] power-series: PowerSeries(X;r) sub-bags: sub-bags(eq;bs) bag-summation: Σ(x∈b). f[x] bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B assoc: Assoc(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op) so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) all: x:A. B[x] fps-single: <c> fps-coeff: f[b] fps-scalar-mul: (c)*f fps-restrict: fps-restrict(eq;r;f;d) crng: CRng rng: Rng bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  power-series: PowerSeries(X;r) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) bag-member: x ↓∈ bs rev_uimplies: rev_uimplies(P;Q) top: Top bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum nil: [] fps-zero: 0 rng_zero: 0 pi1: fst(t) pi2: snd(t) cons-bag: x.b monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id) fps-add: (f+g)
Lemmas referenced :  equal_wf squash_wf true_wf power-series_wf mon_assoc_fps fps-add_wf iff_weakening_equal fps-add-comm fps-ext fps-restrict_wf bag-summation_wf bag_wf fps-zero_wf fps-scalar-mul_wf fps-coeff_wf fps-single_wf sub-bags_wf crng_wf deq_wf valueall-type_wf rng_car_wf deq-sub-bag_wf bool_wf eqtt_to_assert assert-deq-sub-bag eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sub-bag_wf rng_zero_wf bag-summation-filter rng_plus_wf bag-eq_wf rng_plus_comm2 crng_properties rng_properties rng_all_properties bag-extensionality-no-repeats decidable__equal_bag decidable-equal-deq bag-filter_wf subtype_rel_bag assert_wf single-bag_wf bag-filter-no-repeats sub-bags-no-repeats bag-single-no-repeats bag-member-single bag-member-filter assert-bag-eq bag-member_wf member-sub-bags and_wf bag-summation-single bag-summation-empty equal-empty-bag empty-bag-iff-no-member set_wf bag-member-filter-set rng_times_one rng_times_zero bag_to_squash_list list_induction list-subtype-bag subtype_rel_self list_wf nil_wf cons-bag-as-append bag-summation-append abmonoid_comm_fps mon_ident_fps isect_subtype_rel_trivial subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache cumulativity natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation lambdaFormation setElimination rename unionElimination equalityElimination dependent_functionElimination dependent_pairFormation promote_hyp instantiate voidElimination hyp_replacement applyLambdaEquality setEquality dependent_set_memberEquality addLevel productEquality voidEquality equalityUniverse levelHypothesis independent_pairEquality functionEquality functionExtensionality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[d:bag(X)].
        (fps-restrict(eq;r;f;d)  =  \mSigma{}(x\mmember{}sub-bags(eq;d)).  (f[x])*<x>) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_10_37
Last ObjectModification: 2017_07_26-PM-06_34_24

Theory : power!series


Home Index