Nuprl Lemma : fps-restrict-summation
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[d:bag(X)].
    (fps-restrict(eq;r;f;d) = Σ(x∈sub-bags(eq;d)). (f[x])*<x> ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-restrict: fps-restrict(eq;r;f;d)
, 
fps-scalar-mul: (c)*f
, 
fps-add: (f+g)
, 
fps-single: <c>
, 
fps-zero: 0
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
sub-bags: sub-bags(eq;bs)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
fps-single: <c>
, 
fps-coeff: f[b]
, 
fps-scalar-mul: (c)*f
, 
fps-restrict: fps-restrict(eq;r;f;d)
, 
crng: CRng
, 
rng: Rng
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
power-series: PowerSeries(X;r)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
bag-member: x ↓∈ bs
, 
rev_uimplies: rev_uimplies(P;Q)
, 
top: Top
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
list_accum: list_accum, 
nil: []
, 
fps-zero: 0
, 
rng_zero: 0
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cons-bag: x.b
, 
monoid_p: IsMonoid(T;op;id)
, 
ident: Ident(T;op;id)
, 
fps-add: (f+g)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
mon_assoc_fps, 
fps-add_wf, 
iff_weakening_equal, 
fps-add-comm, 
fps-ext, 
fps-restrict_wf, 
bag-summation_wf, 
bag_wf, 
fps-zero_wf, 
fps-scalar-mul_wf, 
fps-coeff_wf, 
fps-single_wf, 
sub-bags_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
rng_car_wf, 
deq-sub-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
rng_zero_wf, 
bag-summation-filter, 
rng_plus_wf, 
bag-eq_wf, 
rng_plus_comm2, 
crng_properties, 
rng_properties, 
rng_all_properties, 
bag-extensionality-no-repeats, 
decidable__equal_bag, 
decidable-equal-deq, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
single-bag_wf, 
bag-filter-no-repeats, 
sub-bags-no-repeats, 
bag-single-no-repeats, 
bag-member-single, 
bag-member-filter, 
assert-bag-eq, 
bag-member_wf, 
member-sub-bags, 
and_wf, 
bag-summation-single, 
bag-summation-empty, 
equal-empty-bag, 
empty-bag-iff-no-member, 
set_wf, 
bag-member-filter-set, 
rng_times_one, 
rng_times_zero, 
bag_to_squash_list, 
list_induction, 
list-subtype-bag, 
subtype_rel_self, 
list_wf, 
nil_wf, 
cons-bag-as-append, 
bag-summation-append, 
abmonoid_comm_fps, 
mon_ident_fps, 
isect_subtype_rel_trivial, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
dependent_set_memberEquality, 
addLevel, 
productEquality, 
voidEquality, 
equalityUniverse, 
levelHypothesis, 
independent_pairEquality, 
functionEquality, 
functionExtensionality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[d:bag(X)].
        (fps-restrict(eq;r;f;d)  =  \mSigma{}(x\mmember{}sub-bags(eq;d)).  (f[x])*<x>) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_10_37
Last ObjectModification:
2017_07_26-PM-06_34_24
Theory : power!series
Home
Index