Nuprl Lemma : fps-restrict-summation
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[d:bag(X)].
(fps-restrict(eq;r;f;d) = Σ(x∈sub-bags(eq;d)). (f[x])*<x> ∈ PowerSeries(X;r))
supposing valueall-type(X)
Proof
Definitions occuring in Statement :
fps-restrict: fps-restrict(eq;r;f;d)
,
fps-scalar-mul: (c)*f
,
fps-add: (f+g)
,
fps-single: <c>
,
fps-zero: 0
,
fps-coeff: f[b]
,
power-series: PowerSeries(X;r)
,
sub-bags: sub-bags(eq;bs)
,
bag-summation: Σ(x∈b). f[x]
,
bag: bag(T)
,
deq: EqDecider(T)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
lambda: λx.A[x]
,
universe: Type
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
cand: A c∧ B
,
assoc: Assoc(T;op)
,
infix_ap: x f y
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
comm: Comm(T;op)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
all: ∀x:A. B[x]
,
fps-single: <c>
,
fps-coeff: f[b]
,
fps-scalar-mul: (c)*f
,
fps-restrict: fps-restrict(eq;r;f;d)
,
crng: CRng
,
rng: Rng
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
power-series: PowerSeries(X;r)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
ring_p: IsRing(T;plus;zero;neg;times;one)
,
group_p: IsGroup(T;op;id;inv)
,
bag-member: x ↓∈ bs
,
rev_uimplies: rev_uimplies(P;Q)
,
top: Top
,
bag-summation: Σ(x∈b). f[x]
,
bag-accum: bag-accum(v,x.f[v; x];init;bs)
,
list_accum: list_accum,
nil: []
,
fps-zero: 0
,
rng_zero: 0
,
pi1: fst(t)
,
pi2: snd(t)
,
cons-bag: x.b
,
monoid_p: IsMonoid(T;op;id)
,
ident: Ident(T;op;id)
,
fps-add: (f+g)
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
power-series_wf,
mon_assoc_fps,
fps-add_wf,
iff_weakening_equal,
fps-add-comm,
fps-ext,
fps-restrict_wf,
bag-summation_wf,
bag_wf,
fps-zero_wf,
fps-scalar-mul_wf,
fps-coeff_wf,
fps-single_wf,
sub-bags_wf,
crng_wf,
deq_wf,
valueall-type_wf,
rng_car_wf,
deq-sub-bag_wf,
bool_wf,
eqtt_to_assert,
assert-deq-sub-bag,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
sub-bag_wf,
rng_zero_wf,
bag-summation-filter,
rng_plus_wf,
bag-eq_wf,
rng_plus_comm2,
crng_properties,
rng_properties,
rng_all_properties,
bag-extensionality-no-repeats,
decidable__equal_bag,
decidable-equal-deq,
bag-filter_wf,
subtype_rel_bag,
assert_wf,
single-bag_wf,
bag-filter-no-repeats,
sub-bags-no-repeats,
bag-single-no-repeats,
bag-member-single,
bag-member-filter,
assert-bag-eq,
bag-member_wf,
member-sub-bags,
and_wf,
bag-summation-single,
bag-summation-empty,
equal-empty-bag,
empty-bag-iff-no-member,
set_wf,
bag-member-filter-set,
rng_times_one,
rng_times_zero,
bag_to_squash_list,
list_induction,
list-subtype-bag,
subtype_rel_self,
list_wf,
nil_wf,
cons-bag-as-append,
bag-summation-append,
abmonoid_comm_fps,
mon_ident_fps,
isect_subtype_rel_trivial,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
because_Cache,
cumulativity,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
productElimination,
independent_functionElimination,
isect_memberEquality,
axiomEquality,
independent_pairFormation,
lambdaFormation,
setElimination,
rename,
unionElimination,
equalityElimination,
dependent_functionElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
voidElimination,
hyp_replacement,
applyLambdaEquality,
setEquality,
dependent_set_memberEquality,
addLevel,
productEquality,
voidEquality,
equalityUniverse,
levelHypothesis,
independent_pairEquality,
functionEquality,
functionExtensionality
Latex:
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[f:PowerSeries(X;r)]. \mforall{}[d:bag(X)].
(fps-restrict(eq;r;f;d) = \mSigma{}(x\mmember{}sub-bags(eq;d)). (f[x])*<x>)
supposing valueall-type(X)
Date html generated:
2018_05_21-PM-10_10_37
Last ObjectModification:
2017_07_26-PM-06_34_24
Theory : power!series
Home
Index