Nuprl Lemma : fps-scalar-mul-zero

[X:Type]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)].  ((0)*f 0 ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-scalar-mul: (c)*f fps-zero: 0 power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_zero: 0
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] power-series: PowerSeries(X;r) true: True fps-zero: 0 fps-coeff: f[b] fps-scalar-mul: (c)*f infix_ap: y squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  fps-ext fps-scalar-mul_wf rng_zero_wf fps-zero_wf power-series_wf crng_wf rng_car_wf equal_wf squash_wf true_wf rng_times_zero iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity setElimination rename hypothesis productElimination independent_isectElimination lambdaFormation because_Cache sqequalRule isect_memberEquality axiomEquality universeEquality applyEquality natural_numberEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].    ((0)*f  =  0)



Date html generated: 2018_05_21-PM-09_57_40
Last ObjectModification: 2017_07_26-PM-06_33_24

Theory : power!series


Home Index