Nuprl Lemma : sub-bag_transitivity

[T:Type]. ∀[as,bs,cs:bag(T)].  (sub-bag(T;as;bs)  sub-bag(T;bs;cs)  sub-bag(T;as;cs))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag: bag(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  sub-bag: sub-bag(T;as;bs) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T top: Top squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-append_wf bag-append-assoc2 equal_wf squash_wf true_wf iff_weakening_equal bag_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin rename dependent_pairFormation cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs,cs:bag(T)].    (sub-bag(T;as;bs)  {}\mRightarrow{}  sub-bag(T;bs;cs)  {}\mRightarrow{}  sub-bag(T;as;cs))



Date html generated: 2017_10_01-AM-08_52_55
Last ObjectModification: 2017_07_26-PM-04_34_20

Theory : bags


Home Index