Nuprl Lemma : fps-compose-ucont
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[g:PowerSeries(X;r)].  ∀x:X. fps-ucont(X;eq;r;f.f(x:=g)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
fps-compose: g(x:=f), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
valueall-type: valueall-type(T), 
has-value: (a)↓, 
all: ∀x:A. B[x], 
crng: CRng, 
comm: Comm(T;op), 
and: P ∧ Q, 
cand: A c∧ B, 
rng: Rng, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
fps-restrict: fps-restrict(eq;r;f;d), 
fps-compose: g(x:=f), 
fps-coeff: f[b], 
tlp: tlp(L), 
hdp: hdp(L), 
so_lambda: λ2x.t[x], 
power-series: PowerSeries(X;r), 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
listp: A List+, 
ge: i ≥ j , 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
cons: [a / b], 
top: Top, 
length: ||as||, 
list_ind: list_ind, 
nil: [], 
bag-union: bag-union(bbs), 
concat: concat(ll), 
bag-append: as + bs, 
nat: ℕ, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
bag-size: #(bs), 
reduce: reduce(f;k;as), 
colength: colength(L), 
less_than: a < b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
nat_plus: ℕ+, 
select: L[n], 
sub-bag: sub-bag(T;as;bs)
Lemmas referenced : 
rng_plus_comm, 
sq_stable__monoid_p, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
crng_properties, 
rng_properties, 
crng_all_properties, 
bag-append_wf, 
bag-rep_wf, 
bag-size_wf, 
list-subtype-bag, 
bag-summation-equal, 
listp_wf, 
bag_wf, 
bag-parts'_wf, 
infix_ap_wf, 
rng_times_wf, 
hdp_wf, 
length_wf_nat, 
tlp_wf, 
bag-product_wf, 
rng_one_wf, 
deq-sub-bag_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
bag-member_wf, 
fps-coeff_wf, 
fps-compose_wf, 
fps-restrict_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
istype-universe, 
bag-member-parts', 
sub-bag-union-of-list, 
hd_wf, 
listp_properties, 
hd_member, 
list-cases, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
istype-void, 
sub-bag-rep, 
tl_wf, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
length_of_cons_lemma, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-nat, 
subtype_rel_self, 
iff_weakening_equal, 
bag-size-append, 
l_all_wf2, 
not_wf, 
equal-wf-T-base, 
l_member_wf, 
list_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
istype-false, 
nil_wf, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
cons_wf, 
length-append, 
add_nat_plus, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
false_wf, 
length_wf, 
bag-size-zero, 
empty-bag_wf, 
l_all_cons, 
bag-union_wf, 
non_neg_length, 
bag-append-assoc2, 
bag-append-ac, 
bag-append-comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomSqleEquality, 
hypothesis, 
isectIsTypeImplies, 
inhabitedIsType, 
rename, 
lambdaFormation_alt, 
extract_by_obid, 
setElimination, 
independent_pairFormation, 
because_Cache, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
dependent_pairFormation_alt, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
universeIsType, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
functionIsType, 
universeEquality, 
natural_numberEquality, 
hypothesis_subsumption, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
setIsType, 
intWeakElimination, 
approximateComputation, 
int_eqEquality, 
functionIsTypeImplies, 
voidEquality, 
dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
sqequalBase, 
pointwiseFunctionality, 
productIsType, 
addEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[g:PowerSeries(X;r)].    \mforall{}x:X.  fps-ucont(X;eq;r;f.f(x:=g)) 
    supposing  valueall-type(X)
Date html generated:
2019_10_16-AM-11_36_06
Last ObjectModification:
2018_11_26-PM-03_09_19
Theory : power!series
Home
Index