Nuprl Lemma : sub-bag-union-of-list
∀[T:Type]. ∀[x:bag(T)].  ∀bs:bag(T) List. ((x ∈ bs) 
⇒ sub-bag(T;x;bag-union(bs)))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-union: bag-union(bbs)
, 
bag: bag(T)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sub-bag: sub-bag(T;as;bs)
, 
member: t ∈ T
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
single-bag: {x}
, 
bag-append: as + bs
, 
true: True
, 
top: Top
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag-append_wf, 
bag-union_wf, 
firstn_wf, 
bag_wf, 
list-subtype-bag, 
subtype_rel_self, 
nth_tl_wf, 
equal_wf, 
l_member_wf, 
list_wf, 
firstn_nth_tl_decomp, 
lelt_wf, 
length_wf, 
single-bag_wf, 
bag-subtype-list, 
add-commutes, 
bag-append-assoc-comm, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
bag-union-append, 
bag-union-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
addEquality, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
equalityTransitivity, 
universeEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[x:bag(T)].    \mforall{}bs:bag(T)  List.  ((x  \mmember{}  bs)  {}\mRightarrow{}  sub-bag(T;x;bag-union(bs)))
Date html generated:
2017_10_01-AM-08_54_54
Last ObjectModification:
2017_07_26-PM-04_36_45
Theory : bags
Home
Index