Nuprl Lemma : sub-bag-union-of-list

[T:Type]. ∀[x:bag(T)].  ∀bs:bag(T) List. ((x ∈ bs)  sub-bag(T;x;bag-union(bs)))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-union: bag-union(bbs) bag: bag(T) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B sub-bag: sub-bag(T;as;bs) member: t ∈ T nat: subtype_rel: A ⊆B uimplies: supposing a prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B single-bag: {x} bag-append: as bs true: True top: Top squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag-append_wf bag-union_wf firstn_wf bag_wf list-subtype-bag subtype_rel_self nth_tl_wf equal_wf l_member_wf list_wf firstn_nth_tl_decomp lelt_wf length_wf single-bag_wf bag-subtype-list add-commutes bag-append-assoc-comm iff_weakening_equal squash_wf true_wf bag-union-append bag-union-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis setElimination rename applyEquality because_Cache independent_isectElimination sqequalRule addEquality natural_numberEquality hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity universeEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaEquality imageElimination equalityUniverse levelHypothesis imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x:bag(T)].    \mforall{}bs:bag(T)  List.  ((x  \mmember{}  bs)  {}\mRightarrow{}  sub-bag(T;x;bag-union(bs)))



Date html generated: 2017_10_01-AM-08_54_54
Last ObjectModification: 2017_07_26-PM-04_36_45

Theory : bags


Home Index